CertViT: Certified Robustness of Pre-Trained Vision Transformers

Nov 09, 2023


Lipschitz bounded neural networks are certifiably robust and have a good trade-off between clean and certified accuracy. Existing Lipschitz bounding methods train from scratch and are limited to moderately sized networks (< 6M parameters). They require a fair amount of hyper-parameter tuning and are computationally prohibitive for large networks like Vision Transformers (5M to 660M parameters). Obtaining certified robustness of transformers is not feasible due to the non-scalability and inflexibility of the current methods. This work presents CertViT, a two-step proximal-projection method to achieve certified robustness from pre-trained weights. The proximal step tries to lower the Lipschitz bound and the projection step tries to maintain the clean accuracy of pre-trained weights. We show that CertViT networks have better certified accuracy than state-of-the-art Lipschitz trained networks. We apply CertViT on several variants of pre-trained vision transformers and show adversarial robustness using standard attacks.

ICML Workshop 2023

Contributed by

Kavya Gupta , Sagar Verma

Related Research

Post Wildfire Burnt-up Detection using Siamese UNet

In this article, we present an approach for detecting burnt area due to wild fire in Sentinel-2 images by leveraging the power of Siamese neural networks. By employing a Siamese network, we are able to efficiently encode the feature extraction process for pairs of images. This is achieved by utilizing two branches within the Siamese network, which capture and combine information at different resolutions to make predictions. The weights are shared between these two branches in siamese networks. This design allows to effectively analyze the changes between two remote sensing images, enabling precise identification of areas impacted by forest wildfires in the state of California as part of ChaBuD challenge thereby assisting local authorities in effectively monitoring the impacted regions and facilitating the restoration process. We experimented with various model architectures to train ChaBuD dataset and carefully evaluated the performance. Through rigorous testing and analysis, we have achieved promising results, ultimately obtaining a final private score (IoU) of 0.7495 on the hidden test dataset. The code is available at https://github.com/kavyagupta/chabud. We also deploy the final model as a point solution for anyone to use at https://firemap.io.

09 November 2023

Detecting Urban Changes with Recurrent Neural Networks from Multitemporal Sentinel-2 Data

The advent of multitemporal high resolution data, like the Copernicus Sentinel-2, has enhanced significantly the potential of monitoring the earth's surface and environmental dynamics. In this paper, we present a novel deep learning framework for urban change detection which combines state-of-the-art fully convolutional networks (similar to U-Net) for feature representation and powerful recurrent networks (such as LSTMs) for temporal modeling. We report our results on the recently publicly available bi-temporal Onera Satellite Change Detection (OSCD) Sentinel-2 dataset, enhancing the temporal information with additional images of the same region on different dates. Moreover, we evaluate the performance of the recurrent networks as well as the use of the additional dates on the unseen test-set using an ensemble cross-validation strategy. All the developed models during the validation phase have scored an overall accuracy of more than 95%, while the use of LSTMs and further temporal information, boost the F1 rate of the change class by an additional 1.5%.

09 November 2023