Shrink & Cert: Bi-level Optimization for Certified Robustness

Nov 09, 2023


In this paper, we advance the concept of shrinking weights to train certifiably robust models from the fresh perspective of gradient-based bi-level optimization. Lack of robustness against adversarial attacks remains a challenge in safety-critical applications. Many attempts have been made in literature which only provide empirical verification of the defenses to certain attacks and can be easily broken. Methods in other lines of work can only develop certified guarantees of the model robustness in limited scenarios and are computationally expensive. We present a weight shrinkage formulation that is computationally inexpensive and can be solved as a simple first-order optimization problem. We show that model trained with our method has lower Lipschitz bounds in each layer, which directly provides formal guarantees on the certified robustness. We demonstrate that our approach, Shrink & Cert (SaC) achieves provably robust networks which simultaneously give excellent standard and robust accuracy. We demonstrate the success of our approach on CIFAR-10 and ImageNet datasets and compare them with existing robust training techniques. Code : https: //

ICML Workshop 2023

Contributed by

Kavya Gupta , Sagar Verma

Related Research

Synthetix: Pipeline for Synthetic Geospatial Data Generation

Remote sensing is crucial in various domains, such as agriculture, urban planning, environmental monitoring, and disaster management. However, acquiring real-world remote sensing data can be challenging due to cost, logistical constraints, and privacy concerns. To overcome these limitations, synthetic data has emerged as a promising approach. We present an overview of the use of synthetic data for remote sensing applications.In this regard, we address three conditions that can drastically affect the optimization of computer vision algorithms: lighting conditions, fidelity of the 3D model, and resolution of the synthetic imagery data. We propose a highly configurable pipeline called Synthetix as part of our GeoEngine platform for synthetic data generation. Synthetix allows us to quickly create large amounts of aerial and satellite imagery under varying conditions, given a few samples of 3D objects on real-world scenes. We demonstrate our pipeline’s effectiveness by generating 3D scenes from 35 real-world locations and utilizing these scenes to generate different versions of datasets and answer the three questions. We conduct an in-depth ablation study and show that considering different environments and weather conditions increases the reliability and robustness of the deep learning networks.

02 January 2024

Post Wildfire Burnt-up Detection using Siamese UNet

In this article, we present an approach for detecting burnt area due to wild fire in Sentinel-2 images by leveraging the power of Siamese neural networks. By employing a Siamese network, we are able to efficiently encode the feature extraction process for pairs of images. This is achieved by utilizing two branches within the Siamese network, which capture and combine information at different resolutions to make predictions. The weights are shared between these two branches in siamese networks. This design allows to effectively analyze the changes between two remote sensing images, enabling precise identification of areas impacted by forest wildfires in the state of California as part of ChaBuD challenge thereby assisting local authorities in effectively monitoring the impacted regions and facilitating the restoration process. We experimented with various model architectures to train ChaBuD dataset and carefully evaluated the performance. Through rigorous testing and analysis, we have achieved promising results, ultimately obtaining a final private score (IoU) of 0.7495 on the hidden test dataset. The code is available at We also deploy the final model as a point solution for anyone to use at

09 November 2023