Aligning Geospatial AI for Disaster Relief with The Sphere Handbook

Nov 09, 2023


The Sphere handbook and its core premise of right to life with dignity have been broadly adopted, establishing a standard operating procedure for global humanitarian intervention. Plenty of machine learning methods aim to aid in disaster relief. While performing exceptionally on a machine learning task, these methods fail to deliver targeted effort to the victims of natural disasters. We argue that this is due to the misalignment of such methods with real-world relief practices. This paper presents the alignment of the Sphere guidelines with Geospatial AI solutions. We show several limitations in different machine learning methods proposed for disaster relief in recent years. We take the case of WASH requirements during flood disasters, extend these models to align with Sphere guidelines, and build a solution that has a much better potential to serve individuals stuck in disasters.

Contributed by

Sagar Verma , Siddharth Gupta , Kavya Gupta

Related Research

Post Wildfire Burnt-up Detection using Siamese UNet

In this article, we present an approach for detecting burnt area due to wild fire in Sentinel-2 images by leveraging the power of Siamese neural networks. By employing a Siamese network, we are able to efficiently encode the feature extraction process for pairs of images. This is achieved by utilizing two branches within the Siamese network, which capture and combine information at different resolutions to make predictions. The weights are shared between these two branches in siamese networks. This design allows to effectively analyze the changes between two remote sensing images, enabling precise identification of areas impacted by forest wildfires in the state of California as part of ChaBuD challenge thereby assisting local authorities in effectively monitoring the impacted regions and facilitating the restoration process. We experimented with various model architectures to train ChaBuD dataset and carefully evaluated the performance. Through rigorous testing and analysis, we have achieved promising results, ultimately obtaining a final private score (IoU) of 0.7495 on the hidden test dataset. The code is available at We also deploy the final model as a point solution for anyone to use at

09 November 2023

Detecting Urban Changes with Recurrent Neural Networks from Multitemporal Sentinel-2 Data

The advent of multitemporal high resolution data, like the Copernicus Sentinel-2, has enhanced significantly the potential of monitoring the earth's surface and environmental dynamics. In this paper, we present a novel deep learning framework for urban change detection which combines state-of-the-art fully convolutional networks (similar to U-Net) for feature representation and powerful recurrent networks (such as LSTMs) for temporal modeling. We report our results on the recently publicly available bi-temporal Onera Satellite Change Detection (OSCD) Sentinel-2 dataset, enhancing the temporal information with additional images of the same region on different dates. Moreover, we evaluate the performance of the recurrent networks as well as the use of the additional dates on the unseen test-set using an ensemble cross-validation strategy. All the developed models during the validation phase have scored an overall accuracy of more than 95%, while the use of LSTMs and further temporal information, boost the F1 rate of the change class by an additional 1.5%.

09 November 2023